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ABSTRACT: Here we consider the class of composites in which the 
strength of the contact between the materials is less than the strength 
of the components. It is found that the strength of such a material is 
independent of the size of the iniriaI defect within certain limits but 
is determined by the shape and size of the most hazardous [weakest] 
inclusion. A theoretical relationship is deduced for the strength in 
relation to the size of the largest inclusion, which agrees well with ex- 
periment ill. This mechanism probably plays a part in the failure of 
steel and may be one reason for the scale effect in steel. 

El.. The scale effect. Consider a composite consisting of two ma- 
terials. One of these (the bonding agent) is continuous, while the 
other forms inclusions. Boundary conditions occur at the interface 
between the two; we shall not consider their physical nature. 
The following basic assumptions are made. 

(l) The inclusions are stronger than the bonding agent. 
(2) The bond between inclusions and agent is weaker than both 

materials. 
(8) The characteristic size of the most hazardous defect in the 

bonding agent (which determines the strength of the latter) is small 
relative to the characteristic size of the largest inclusion. 

The detailed significance of these definitions will become clear 
from what follows. Of course, they apply only to some fairly general 

class of composites. 
Consider such a material under uniaxial tension. The strength is 

determined by the most hazardous defect (a crack or dislocation). If 
the inclusions are stronger than the bonding agent, the stress tends to 
concentrate at the side of the boundary of an inclusion facing the ten- 
sion direction. For instance, if the inclusion is a circular cylinder 
(Fig. 1), the tensile stress is largest at 0 = 0 (concentration coefficient 
8/2 for a rigid circular inclusion). Elsewhere, the perturbation from 
the inclusion tends to reduce or even to reverse the stress. 

From the second assumption above, the interface between the 
materials is the most likely site of failure, and we expect a crack 
to develop at that point, starting at 0 = 0 in Fig. I (the hazardous 
point); we assume that there is always some initial crack character- 
istic of the strength of the contact layer at that point. Growth of the 
initiaI crack is unstable, but dynamic growth generally soon ceases, 
and the crack is subsequently propagated along the interface as the 
load increases, with the stress coefficient increasing for the bonding 
agent near the end of the crack. The crack grows stably only up to 
a certain critical load, which corresponds to a limiting value of that 
coefficient [2]. Further growth of the crack (in the bonding agent) will 
be unstabie if the inclusion is convex. If the inclusions are fairly evenly 
distributed in the body, and if the inclusion has a size not less than the 
order of the size of the other inclusions, then this critical load will be 
the Iimiting load for the whole body, i. e . ,  will represent the strength 

Fig. 1 

of the composite. These arguments do not apply to materials whose 
inclusions take the form of long fibers if the tension is applied along 

the fibers. The strength of a composite that satisfies assumptions (1)-- 
(3) is, in general, not dependent on the size of the initial crack but 

is determined by the shape and by the size of the most hazardous in- 
clusion (a form of scale effect), 

We therefore have to determine the strength a of the composite 
in relation to inclusion shape and size d. Themethod of dimensions 
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Fig. 2 

readily provides the general form of the relation of o to d. It is clear 
that o is also dependent on the following quantities: the adhesion mod- 
ulus K2, the characteristic linear size l0 of the limiting crack, the 
shear moduli g~ and ga, Poisson'sratios va and vz, and the ratio q of the 
contents of bonding agent and inclusions. (The subscript 1 refers to the 
inclusions, while the subscript 2 refers to the bonding agent. ) Now l0 
is completely determined by D, the adhesion modulus for the contact 
layer between the materials, by d, and by Ka, #a, >~, v2, vl, and q. 
The product theorem gives 

"K-~ = \ K~ ' K= ' K 2 '  vl,  v ~ , q  . ( 1 . 1 )  

It also follows from the stress problem that the stresses are depen- 
dent only on ~J/~z, so the first two arguments in F appear as their 
ratio. The final result in dimensionless form is 

D 3) F \ }-~2 ' K~7 ' "r v~, 

In particular, it follows from (1.2) that the hazard increases with 
the characteristic dimension of the inclusion, other things being equal. 
8taverman (see Fig.'/9 in [1]) reported experiments on the stretching 

of rubber containing 42% NaC1 crystals by volume: 

d =300--480 210--300 90--105 50--60 33--40 Um 

= 4 5.2 .q t2 t3 kg/em 2 

d~max = 87.5 90 92 93 82.5 

These results show that o(dmax) ~/a differs from the mean of 89 by 
7% in one instance and by 2-3% in the others, and therefore this 

composite belongs to the class envisaged here. 
Formula (1.2) applies, provided that the size of the most hazardous 

inclusion is not comparable with the characteristic size of the most 
hazardous microcraek in the bonding agent; if the size of the inclu- 
sions is reduced below this limit, the strength of the composite will be 
independent of the inclusions (except, perhaps, for q close to unity). 

w Example. Consider a single circular inclusion under the con- 
ditions of planar deformation of Fig. 1. An isotropic elastic body is 
represented in the complex z-plane by the exterior (e io, e -i0) of a 
circle of radius P.. The elastic constants of the inclusion (1 z] < R) and 
bonding agent (iz] > R) are, for simplicity, taken as identical, while 
the strength of the contact layer (tzl = R) is taken as being less than 
the strength of the materials. The adhesion conditions apply at the 
boundary away from the crack. Let the surface of the cracks be free of 
external load and let the body at infinity be subject to uniaxial ten- 
sion o x = p (Fig. 1). The limiting equilibrium of a body with a crack 
in the form of an arc has been discussed [31 We take a polar coordi- 
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nate system r15 with its center at the end of the crack z = e i09 (t5 = 0 
corresponds to the extension of the crack along the tangent). 

The stresses Or, o15, and ~r15 on the extension of the crack take [3] 
the following form for r << R: 

kl 

k2 
Tr~ = - ~ ,  

3 0 t - -  a/4 sin ~ 0 
k~=2-  ~ ~ r ' R ~ n - 0 ( s i n - - ~ - 0 + s i n  2 l + s i n ~ l ] 2 0 ) .  (2.1) 

In the  init ial  stage of growth, when the direction of propagation 
is known, the definitive characteristic of the material  as regards fail- 
ure is [4] (o~ + rr152) x/z, and, near the end of the crack, we have 
from (2.1) that 

p V ~  
1% + i ~  I = ~ +'%~ - ~! (o) I/7 ' 

I (o) = 

4 ~ 3 - -  cosO 
= " a ~ ( 4 4 +  i2 cos 0 + t2 eosaO-- 4 cos40 + s i n a  6 ' (2.2) 

The condition for l imit ing equilibrium may [4] be put as 

[% ~-i'Cr~l-->D/~x V'r for r- . ,O , (2.3) 

in" which D is, a constant characterizing the resistance of the contact 
layer to failure, which is similar to the adhesion modulus for an iso- 
tropic and homogeneous body [2]. 

From (2.2) and (2.3) we have the following relation between the 
load p, and the parameter  O defining the size of the crack: 

p , : / ( 0 )  ( p , = p  ]/ft/D) . (2,4) 

Figure 2 shows p, = ~iO). There is a region of instability for 0 < 09, 
(0, = 45*), while the crack grows stably for 0 > 09,. Let 092 be the point 
where o~ at the end of the crack attains the l imit ing value K (adhe- 
sion modulus of the bonding agent). This O~ and the breakaway at 15 = 
= &, of the crack occur when 

1 
lim ] / T x r ~ ( 0 2 , ~ , ) = 0  , lim 1 / ~ % ( 0 2 . ~ , ) = - ~ - K .  (2.8) 
r ~ o  r ~ 0  

The size 00 of the initial crack governs the behavior of the elas- 
tic system. 

Let p** be the failure load. 
1)090 > 0 1 or (9o > 09z, with f(O 0 = J(09z) = ](oa). The initial crack does 

not grow until the load f(090) is reached, after which failure is catastro- 
phic. There is no scale effect. 

2) 01 < 0~ < 0 , ,  with p** = f(Oa). When the toad reaches ~(090), the 
crack grows dynamical ly to the value of 0 corresponding to ;((00) on the 
stable branch of the curve. After this, the crack grows stably as p, in- 
creases until 09~ is reached. 

3) 01 < 00 < 09a, with p** = f(Oz). The initial crack grows stably with 
the load from ~(090) to ](Oa), whereupon failure occurs. 

This shows that there is a scale effect when the initial crack satis- 
fies Ox < 09 < 09z, and the l imiting load is not dependent on the initial 
size of the crack. The larger K/D the greater the range (09I, 09a) and 
the more important the proposed failure mechanism,  Which implies a 
scale effect. If case (1) applies, the composite fails via onset of fail- 
ure in the bonding agent. The length of the initial defect can be varied 
only conceptually,  since this quantity is a characteristic of the material  
(contact layer or bonding agent) and is approximateiy constant. The 
above arguments indicate the l imits to the size of the inclusions within 
which the strength is dependent on that size. A rough formula for these 
l imits for D << K is 

2K 2 2K 
a~z20[ < R < ~ ,  (2.6) 

in which o is the short-term resistance of the bonding agent. 
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